

Part 5: Evaluating Landfill Gas Potential

Presented By:

Linda Nutting

SCS Engineers

June 26, 2001

Training Workshop

Sao Paulo, Brazil

Outline

- Objectives
- RoughApproximationMethod
- Model Estimates
- Field Testing
- Summary

- Estimate the current and future quantities of gas that will be generated and may be recovered at a landfill
- Information is used for landfill gas project planning and design
- 3 methods available

LANDHIL METHANE OUTREACH PROGRAM

Landfill Gas Generation

- Amount of LFG production is governed by:
 - amount of waste
 - type of waste
 - age of waste
 - moisture content
 - temperature
 - pH
- These factors cannot be easily modified
- LFG production peaks about one year after waste placement and decreases 2% to 8% per year thereafter

Rough Approximation Method

- Simplest method
- Assumes that each metric ton of waste will produce approximately 6 m³ of landfill gas per year
- Waste should be less than 10 years old
- Production rate may be sustained for approximately 5 to 10 years

Rough Approximation Method - Confidence Levels

- This approach is used for initial project planning and screening (not for system design)
- Estimates in the range of approximately
 +/- 50 % accuracy

- First Order Decay Equation
- Takes into account site specific information
- Rate constants can be adjusted for regional climatic conditions
- Best used for landfills with greater than I million tons of waste in-place

USEPA LanGem Model

- USEPA model is widely used in the LFG industry
- USEPA model consistent with Intergovernmental Panel on Climate Change Protocols (IPCC) for calculating greenhouse gas emissions inventories
- Other LFG models available

- Projects Landfill Gas Generation Rate
- Projects Landfill Gas Recovery Potential
- Confidence Levels

Model Output

Methodology

USEPA Landfill Gas Emissions Model

$$Q = Lo R (e^{-kc} - e^{-kt})$$

- Develop Site-Specific Inputs:
 - Methane Generation Potential (Lo)
 - Methane Generation Rate Constant (k)
- Projected Methane Generation and Recovery Rates

Key Inputs

- Year LandfillOpened
- Annual Acceptance Rate
- Quantity of Waste In-Place
- RemainingDisposal Capacity
- Landfill ClosureDate
- Precipitation

Methane Generation Potential (Lo)

- Range of Values:
 - $0 312 \text{ (m}^3\text{CH}_4/\text{Mg)}$
- USEPA Default Values:
 - CAA 170 (m³CH₄/Mg)
 - AP42 100 (m³CH₄/Mg)
- Suggested Local Value:
 - Approximately I40 I80 (m³CH₄/Mg)

Methane Rate Constant (k)

- Range of Values:
 - = 0.003 0.4 (I/yr)
- USEPA Default Values:
 - CAA 0.05 (I/yr)
 - AP42 Wet Climate 0.04 (I/yr)
 - AP42 Dry Climate 0.02 (I/yr)
- Suggested Local Value:
 - Approximately 0.05 0.15 (1/yr)

Projected LFG Generation Rate

- Model output provides an estimate of annual methane generation rates
- Generally assumes landfill gas contains
 50 % methane

Projected LFG Recovery Rate

- The actual LFG recovery rate will depend on the following:
 - LFG collection system coverage (% = radius of influence/landfill area)
 - LFG recovery system collection efficiency (depe on collector design and landfill characteristics)

Projected LFG Recovery Rate, continued...

- Expected range:
 - 60 to 85 % of projected landfill gas generation rate

Confidence Levels

- Sources of Uncertainty:
 - Method
 - Data quality
 - Collection efficiency of the landfill gas system
 - Other factors
- Estimates in the range of +/- 25 % for initial years
- Greater variances in the longer term

Field Testing

- Install test wells
- Perform testing and monitoring
- Field TestingIssues
- Confidence Levels

- Install as many vertical extraction wells or horizontal collectors as possible in representative portions of the landfill
- Flare recovered gas to control discharge

Perform Testing and Monitoring

- Balance the well field
- Recover LFG on a continuous basis during the testing period
- Monitor gas quality at each well and at the flare station
- Review results

Advantages:

- Provides site-specific data
- Provides information on landfill leachate levels

Disadvantages:

- May over-estimate sustainable LFG recovery rate
- May not provide information on seasonal variations

- Sustainable gas yields may be only 50 % of results from a field testing program
- Extend testing program to increase confidence levels and verify landfill gas resources

Summary

- Information on LFG recovery rates is a critical element in project planning and sizing of utilization equipment
- 3 methods available
- LFG modeling combined with field testing provide the best results
- Field testing should be performed on a continuous basis over an extended period